- In order to achieve CHP efficiencies of 80% the recovery of waste heat for <u>useful</u> purposes is more significant than the electric efficiency
- This isn't necessarily in sync with the economics of CHP except for rebates

- CHP Efficiency = Total kW converted to Btu's plus total useful thermal energy in Btu's divided by the total fuel input in Btu's (HHV or LHV)
- Heat Recovery Basis:
 - CHP Efficiency = (kW x 3.414 + HR MBH)/Fuel MBH
 - (Favors low efficiency thermal conversion equipment)
- Output Basis:
 - CHP Efficiency = (kW x 3.414 + Output MBH)/Fuel MBH
 - (Favors high efficiency thermal conversion equipment)
- Optimal basis depends on incentive program rules, emissions regulations, etc.

- Heat Recovered = Flow x Sp Heat x Sp Gravity x -T
 - T = Inlet Temp Outlet Temp
- Heat Recovery Inlet Temp is determined by the type and specific design of the prime mover
- Outlet Temp is defined by the HR equipment and the thermal product quality required
- Flow and Temp are also subject to inlet air temperature and equipment elevation (combustion air density)
- Turbine generators use a higher air to fuel ratio than
 IC engines and are more affected by air density

- Enthalpy is the total energy of a flowing medium.
- It is a product of the specific heat, specific gravity and the temperature.

- HR = Flow x (Inlet Enthalpy Outlet Enthalpy)
- Steam = HR/(Steam Enthalpy Feedwater Enthalpy)
- Hot Water = HR/(HW Out Enthalpy HW Return Enthalpy)
- Cooling = Steam or HW x Equipment Efficiency (COP)
 - e.g. 10,000 lbs/hr Exhaust Stream at 900 F in and 300 F out
 - 150 psig Steam w/ 200 F Feedwater (Condensing System)
 - Steam Turbine Chiller, 44 F & 83 F, 90% Nom Capacity => 9
 lbs/Ton
 - HR = 10,000 x (223 59) = 1,640,000 Btu/hr
 - Steam = 1,640,000/(1198 168) = 1,592 lbs/hr
 - Chiller Output = 1,592/9 lbs per Ton = 177 Tons

CHP Prime Movers

- Combustion Turbines 0.5–10 MW
- Microturbines 30–250 kW
- IC Engines 30 kW-5 MW
- Fuel Cells 200 kW-1 MW
- 65% 50% WASTE HEAT
- 25% 40% Electricity

Generator Thermal Output

- Simple Cycle Combustion Turbine:
 - High Volume, High Temp Exhaust (900 1000 F)
- Recuperated Microturbine:
 - High Volume, Medium Temp Exhaust (500 600 F)
- IC Engine:
 - Low Volume, High Temp Exhaust (900 1000 F)
 - + Hot Water (200 220 F)
- Fuel Cell (SOFC):
 - Low Volume, Medium Temp Exhaust (600 700 F)

CHP System Thermal Output

- CHP system thermal output is determined by the host facility needs for heating, cooling or process.
- These can vary from 40 F chilled water to 300 psig steam and typically involve a mixture of forms.
 - Technologies:
 - Hot Water HEX
 - Boilers/SteamGenerators
 - Steam Turbines
 - 2E Absorbers
 - 1E Absorbers
 - Desiccants

Applications:

- Process Heat
- Space Conditioning Heat
- Pool Heat
- Domestic Hot Water
- Cooling
- Freezing
- Dehumidification

DG/TAT Match

Distributed Generation Technologies

Gas-turbine

Solid Oxide Fuel Cell

Microturbine

I.C. Engine Exhaust

Thermally-Activated Cooling Technologies

Steam Turbine Centrifugal Chiller

360°F

180°F

Double-Effect Absorption Chiller

Single-Effect Absorption Chiller

Desiccant Technology

Gas Turbines

- Recouperated or Non-Recouperated
 - Exhaust Temperature & Electric Efficiency
- Ambient Conditions, Elevation, TIAC
 - Exhaust Temperature & Volume
- Duct Burner
 - Exhaust Volume/Temp
- HR Boiler Feedwater Temp
 - Steam Production
- Back Pressure
 - Generator Performance

Source: Solar Turbines

- Direct Exhaust Fired Absorbers
 - 1E Exhaust Temp = 250 F, 2E Exhaust Temp = 350 F

Gas Turbines

Generator		Recuperated	Non-Recouperated			
Generator Nominal Output	kW	4,506	5,329			
Fuel Input LHV	MBH	40,300	59,300			
Heat Rate LHV	Btu/kW	8,990	11,128			
Nominal Electric Efficiency	%	35%	28%			
Exhaust Flow	Mlb/hr	140.4	167.6			
Exhaust Temp	F	707	954			
HRSG		No Duct Burner	No Duct Burner	No Duct Burner	Duct Burner	
Duct Burner Input	MBH	-	-	-	30,226	
Temp after Duct Burner	F	707	954	954	1,600	
Exhaust Temp	F	350	350	275	350	
Heat Recovered as Steam	MBH	13,713	27,696	31,135	57,317	
Feedwater Temp	F	200	200	200	200	
Steam Output	lb/hr	13,379	27,020	31,260	55,919	
Steam Temp	F	352.9	352.9	249.7	352.9	
Steam Pressure	psig	150	150	15	150	
Chiller		Steam Turbine	Steam Turbine	1E Absorber	Steam Turbine	
Total Output	tons	1,445	3,050	1,786	6,311	
Tons/kW (nom)	#	0.32	0.57	0.34	1.18	
Number of Units	#	1	2	2	3	
Full Load COP	#	1.26	1.32	0.69	1.32	
Efficiencies (LHV)						
Thermal/Electric Ratio	#	0.32	0.57	0.34	1.18	
Electric Efficiency	%	35%	28%	28%	28%	
Heating Efficiency	%	72%	77%	83%	84%	
Cooling Efficiency	%	79%	91%	65%	104%	
Heat Recovery Efficiency	%	55%	67%	76%	80%	
Basis: Standard 60 Hz Generator at ISO conditions, 60% RH, sea level and operating on natural gas.						

Source: ICHPS/Solar/York

IC Engines

- Exhaust + Jacket, Exhaust Only or Jacket Only
- Ambient Conditions, Elevation
 - Small Effect on Exhaust Temperature & Volume
- Coolant Makeup (% Glycol)
 - Flow & Outlet Temperature
- Jacket Coolant Return Temperature
 - Basis for HW Temperature & Chiller Efficiency
- Low Temperature Circuits
 - Low or No Heat Recovery Potential

Generator						
Generator Nominal Output	kW	1,100	1,100			
Heat Rate LHV	Btu/kWh	8,334	8,334			
Full load fuel input LHV	MBH	9,167	9,167			
Nom Electric Efficiency	%	41%	41%			
Jacket Heat Loop						
HT Circuit Outlet Temp	°F	210.0	-			
Ethylene Glycol Percentage	%	50	Use for Heat			
HT Circuit Flow	GPM	400	or			
HT Circuit Return Temp	°F	197.5	Send to Dump			
HT Circuit Heat Recovery	MBH	2,248	-			
Exhaust Heat Recovery						
Exhaust mass flow	lbs/hr	13,224	13,224			
Exhaust Temperature to HEX	°F	756	756			
Exhaust Temperature after HEX	°F	275	275			
Exhaust Heat Recovery	MBH	1,740	1,740			
Total Heat Recovery		Jacket + Exhaust	Exhaust Only			
Total Heat Recovery	MBH	3,988	1,740			
Coolant Temperature after HEX	°F	219.7	125 psig			
Delta-T	°F	22.2	Steam			
Low Temp Dump Loop						
LT Circuit Out	°F	146	146			
LT Circuit In	°F	130	130			
LT Circuit Flow	GPM	125	125			
Total Heat Dump	MBH	923	923			
Chiller		1E Absorber	2E Absorber			
Cooling Output	Tons	233	174			
Tons/kW (nom)	#	0.21	0.16			
Number of Units	#	1	1			
Full Load COP	#	0.7	1.2			
Basis: ISO conditions, sea level and operating on natural gas.						

Source: ICHPS/Waukesha